Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 431
Filtrar
1.
BMC Genomics ; 25(1): 398, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654150

RESUMO

Pinellia ternata (Thunb.) Briet., a valuable herb native to China, is susceptible to the "sprout tumble" phenomenon because of high temperatures, resulting in a significant yield reduction. However, the molecular regulatory mechanisms underlying the response of P. ternata to heat stress are not well understood. In this study, we integrated transcriptome and miRNAome sequencing to identify heat-response genes, microRNAs (miRNAs), and key miRNA-target pairs in P. ternata that differed between heat-stress and room-temperature conditions. Transcriptome analysis revealed extensive reprogramming of 4,960 genes across various categories, predominantly associated with cellular and metabolic processes, responses to stimuli, biological regulation, cell parts, organelles, membranes, and catalytic and binding activities. miRNAome sequencing identified 1,597 known/conserved miRNAs that were differentially expressed between the two test conditions. According to the analysis, genes and miRNAs associated with the regulation of transcription, DNA template, transcription factor activity, and sequence-specific DNA binding pathways may play a major role in the resistance to heat stress in P. ternata. Integrated analysis of the transcriptome and miRNAome expression data revealed 41 high-confidence miRNA-mRNA pairs, forming 25 modules. MYB-like proteins and calcium-responsive transcription coactivators may play an integral role in heat-stress resistance in P. ternata. Additionally, the candidate genes and miRNAs were subjected to quantitative real-time polymerase chain reaction to validate their expression patterns. These results offer a foundation for future studies exploring the mechanisms and critical genes involved in heat-stress resistance in P. ternata.


Assuntos
Resposta ao Choque Térmico , MicroRNAs , Pinellia , Plântula , Transcriptoma , Pinellia/genética , Pinellia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Resposta ao Choque Térmico/genética , Plântula/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
2.
Plant Physiol Biochem ; 208: 108539, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38513515

RESUMO

Pinellia ternata, a valuable Chinese herb, suffers yield reduction due to "sprout tumble" under high temperatures. However, the mechanisms underlying its high-temperature stress remain poorly understood. NAM, ATAF1/2, and CUC2 (NAC) transcription factors regulate plant tissue growth and abiotic stress. Hence, there has been no comprehensive research conducted on NAC transcription factors in P. ternata. We identified 98 PtNAC genes unevenly distributed across 13 chromosomes, grouped into 15 families via phylogenetic analysis. Gene expression analysis revealed diverse expression patterns of PtNAC genes in different tissue types. Further studies revealed that PtNAC5/7/17/35/43/47/57/66/86 genes were highly expressed in various tissues of P. ternata and induced by heat stress, among which PtNAC66 was up-regulated at the highest folds induced by heat temperature. PtNAC66 is a nuclear protein that can selectively bind to the cis-responsive region NACRS but lacks the ability to activate transcription in yeast. For further research, PtNAC66 was cloned and transgenic Arabidopsis was obtained. PtNAC66 overexpression increased high-temperature tolerance compared to wild-type plants. Transcriptome profiling demonstrated that overexpression of PtNAC66 led to significant modification of genes responsible for regulating binding, catalytic activity, transcription regulator activity and transporter activity response genes. Additionally, PtNAC66 was found to bind the promoters of CYP707A3, MYB102 and NAC055, respectively, and inhibited their expression, affecting the high-temperature stress response in Arabidopsis. Our research established the foundation for functional studies of PtNAC genes in response to high-temperature forcing by characterizing the P. ternata NAC gene family and examining the biological role of PtNAC66 in plant high-temperature tolerance.


Assuntos
Arabidopsis , Pinellia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Pinellia/genética , Pinellia/metabolismo , Temperatura , Filogenia , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo
3.
J Hazard Mater ; 470: 134116, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38547753

RESUMO

Microplastic (MP), as a new pollutant, not only affects the growth and development of plants but also may affect the secondary metabolites of plants. The anti-tumor role of Pinellia ternata is related to secondary metabolites. The role of brassinolide (BR) in regulating plant resistance is currently one of the research hotspots. The paper mainly explores the regulation of BR on growth and physiology of Pinellia ternata under MP stress. The experimental design includes two levels of MP (0, 1%) and two levels of BR (0, 0.1 mg/L). MP led to a marked reduction in plant height (15.0%), Fv/Fm (3.2%), SOD and APX activity (15.0%, 5.1%), whereas induced an evident raise in the rate of O2·- production (29.6%) and GSH content (4.4%), as well as flavonoids (6.8%), alkaloids (75%), and ß-sitosterol (26.5%) contents. Under MP addition, BR supply significantly increased plant height (15.7%), aboveground and underground biomass (16.1%, 10.3%), carotenoid and GSH content (11.8%, 4.2%), Fv/Fm (2.9%), and activities of SOD, GR, and MDHAR (32.2%, 21.08%, 20.9%). These results indicate that MP suppresses the growth of P. ternata, although it promotes secondary metabolism. BR can alleviate the inhibitory effect of MP on growth by improving photosynthesis, redox homeostasis, and the AsA-GSH cycle.


Assuntos
Brassinosteroides , Glutationa , Homeostase , Oxirredução , Fotossíntese , Pinellia , Esteroides Heterocíclicos , Fotossíntese/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Glutationa/metabolismo , Brassinosteroides/metabolismo , Pinellia/metabolismo , Pinellia/efeitos dos fármacos , Pinellia/crescimento & desenvolvimento , Esteroides Heterocíclicos/farmacologia , Plásticos/metabolismo , Sitosteroides/metabolismo , Flavonoides/metabolismo
4.
Funct Plant Biol ; 512024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38316513

RESUMO

Pinellia ternata is an important natural medicinal herb in China. However, it is susceptible to withering when exposed to high temperatures during growth, which limits its tuber production. Mitochondria usually function in stress response. The P . ternata mitochondrial (mt) genome has yet to be explored. Therefore, we integrated PacBio and Illumina sequencing reads to assemble and annotate the mt genome of P . ternata . The circular mt genome of P . ternata is 876 608bp in length and contains 38 protein-coding genes (PCGs), 20 tRNA genes and three rRNA genes. Codon usage, sequence repeats, RNA editing and gene migration from chloroplast (cp) to mt were also examined. Phylogenetic analysis based on the mt genomes of P . ternata and 36 other taxa revealed the taxonomic and evolutionary status of P . ternata . Furthermore, we investigated the mt genome size and GC content by comparing P . ternata with the other 35 species. An evaluation of non-synonymous substitutions and synonymous substitutions indicated that most PCGs in the mt genome underwent negative selection. Our results provide comprehensive information on the P . ternata mt genome, which may facilitate future research on the high-temperature response of P . ternata and provide new molecular insights on the Araceae family.


Assuntos
Genoma Mitocondrial , Pinellia , Plantas Medicinais , Pinellia/genética , Genoma Mitocondrial/genética , Filogenia , Plantas Medicinais/genética , Tubérculos
5.
Physiol Plant ; 176(1): e14195, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38332400

RESUMO

This review aims to elucidate the intricate effects and mechanisms of terahertz (THz) wave stress on Pinellia ternata, providing valuable insights into plant responses. The primary objective is to highlight the imperative for future research dedicated to comprehending THz wave impacts across plant structures, with a specific focus on the molecular intricacies governing root system structure and function, from shoots to roots. Notably, this review highlights the accelerated plant growth induced by THz waves, especially in conjunction with other environmental stressors, and the subsequent alterations in cellular homeostasis, resulting in the generation of reactive oxygen species (ROS) and an increase in brassinosteroids. Brassinosteroids are explored for their dual role as toxic by-products of stress metabolism and vital signal transduction molecules in plant responses to abiotic stresses. The paper further investigates the spatio-temporal regulation and long-distance transport of phytohormones, including growth hormone, cytokinin, and abscisic acid (ABA), which significantly influence the growth and development of P. ternata under THz wave stress. With a comprehensive review of Reactive oxygen species (ROS) and Brassinosteroid Insensitive (BRI) homeostasis and signalling under THz wave stress, the article elucidates the current understanding of BRI involvement in stress perception, stress signalling, and domestication response regulation. Additionally, it underscores the importance of spatio-temporal regulation and long-distance transport of key plant hormones, such as growth hormone, cytokinin, and ABA, in determining root growth and development under THz wave stress. The study of how plants perceive and respond to environmental stresses holds fundamental biological significance, and enhancing plant stress tolerance is crucial for promoting sustainable agricultural practices and mitigating the environmental burdens associated with low-tolerance crop cultivation.


Assuntos
Brassinosteroides , Pinellia , Brassinosteroides/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pinellia/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ácido Abscísico/metabolismo , Estresse Fisiológico , Citocininas/metabolismo , Plantas/metabolismo , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/farmacologia
6.
Plant Physiol Biochem ; 207: 108377, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38271862

RESUMO

The bulbil expansion of P. ternata is a key period for its yield formation, and the process of bulbil expansion is often subjected to short-term heavy precipitation. It is not clear whether the short-term waterlogging can affect bulbil expansion. Brassinolide (BR) is widely believed to enhance plant tolerance to abiotic stress. The study investigated the effects of normal water (C), waterlogging (W), waterlogging + BR (W + B), waterlogging + propiconazole (W + P) on P. ternata at the bulbil expansion period in order to assess P. ternata's ability to cope with waterlogging during the bulbil expansion stage and the regulation effects of BR on the process. The biomass of P. ternata was significantly increased after waterlogging. W treatment significantly reduced the H2O2 and MDA contents, the rate of O2⋅- production and the activities of antioxidant enzymes compared with the C group. AsA and GSH contents were significantly reduced by W treatment. However, the ratios of AsA/DHA and GSH/GSSG were slightly affected by W treatment. The rate of O2∙- production and H2O2 content in W + B group were significantly lower than those in W group. The POD, APX, and GR activities, and GSH content in W + B group were evidently increased compared with the W group. Soluble sugar and active ingredients contents were significantly increased after waterlogging, and the enhancement was reinforced by BR. In conclusion, waterlogging reduced oxidative stress in P. ternata under the experimental conditions. BR treatment under waterlogging had a positive effect on P. ternata by enhancing antioxidant capacity and promoting the accumulation of soluble sugars and active ingredients.


Assuntos
Antioxidantes , Pinellia , Esteroides Heterocíclicos , Antioxidantes/farmacologia , Pinellia/fisiologia , Peróxido de Hidrogênio , Brassinosteroides/farmacologia
7.
Environ Monit Assess ; 195(12): 1479, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966553

RESUMO

Pinellia ternata, a traditional Chinese medicine, is well-renowned for its effectiveness in treating sickness such as coughs with excessive phlegm, vomiting, and nausea. The nucleoside components of P. ternata have been shown to have antitumor activity. Identifying potential growth areas of high-quality P. ternata based on the content of five nucleoside components and the identification of climatic features suitable for the growth of P. ternata will help to conserve P. ternata resources with targeted bioactive compounds. Using high-performance liquid chromatography (HPLC), we determined five nucleoside components, uridine, guanosine, adenosine, inosine, and thymidine, at 27 sampling points of P. ternata collected from 21 municipalities of 11 provinces in China. We used ecological niche modeling to identify the major environmental factors associated with the high metabolite content of P. ternata, including precipitation of the warmest quarter, annual mean temperature, annual precipitation, and isothermality. Areas with high suitability for the five nucleosides were found in Hebei, Shandong, Shanxi, Gansu, Sichuan, Guizhou, and Hubei Provinces. Under the RCP 2.6, RCP 4.5, and RCP 8.5 scenarios, the areas with a suitable distribution decreased and some areas with high suitability became areas with low suitability. Overall, our findings advance our knowledge of the ecological impacts of climate change and provide a valuable reference for conserving and sustainably developing high-quality P. ternata resources in the future.


Assuntos
Nucleosídeos , Pinellia , Monitoramento Ambiental , Ecossistema , China
8.
Zhonghua Yi Shi Za Zhi ; 53(5): 259-267, 2023 Sep 28.
Artigo em Chinês | MEDLINE | ID: mdl-37935508

RESUMO

Before the Song Dynasty, the main processing method of Pinelliae Rhizoma was soup washing. The "new method" in Taiping Huimin Heji JuFang is a processing method that concocted with Ginger,white alum and starter-making.The "Fa Banxia" in the Yuan Dynasty's Yuyuan Yaofang comes from the Taiping Huimin Heji JuFang, and the Fa Wen Banxia, Fa Bai Banxia, and Fa Hong Banxia are the processing methods of patent medicine with a variety of other herbs.Fa Banxia appeared in the Ming Dynasty, and its auxiliary materials were ginger and white alum, and medical formulary began to include formulas containing Fa Banxia. Bencao Gangmu abbreviates the Yuan Dynasty's Fabai Banxia as "Fa Banxia", and is elaborated under the item attached "prescription" item instead of the "treatment". In the literature of Materia Medica, it is recorded that the preparation of auxiliary materials in Fa Banxia increased, including lime, licorice, soap horn, and simple nitro.After Daoguang in the Qing Dynasty, the Fa Banxia in famous medical cases was more used, and at that time, Fa Banxia was Xian Banxia. There are two recipes for Xian Banxia: one is made with seven processes, and the other is soaked in alum licorice water. During the Republican period, Zhang Cigong also pointed out that Fa Banxia was sliced Xian Banxia after rinsing and boiling, while the preparation method of Xian Banxia was Banxia made of ginger and white alum.Ye Juquan pointed out that the so-called "fa" is neither an ancient method nor a new method, questioning the process of repeated immersion in Banxia. After 1949, the questioning of Fa Banxia continued unceasing.Influenced by this, the 1960 edition Beijing Traditional Chinese Medicine Slice Cutting Experience included the method of soaking alum, licorice ,lime water, and was included in the 1963 edition of the Pharmacopoeia of the People's Republic of China.The 1985 version reduced the soaking time and eliminated the soaking process of alum based on the 1963 version, and this method is still used today.


Assuntos
Medicamentos de Ervas Chinesas , Pinellia , Humanos , Medicina Tradicional Chinesa , China , Água
9.
Front Biosci (Landmark Ed) ; 28(9): 202, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37796682

RESUMO

BACKGROUND: High temperature and drought environments are important limiting factors for Pinellia ternata growth, whereas shading can promote growth by relieving these stresses. However, the mechanism of growth promotion by shading in P. ternata is unknown. Long non-coding RNAs (lncRNAs) play important roles in the plant's growth and environmental response, but few analyses of lncRNAs in P. ternata have been reported. METHODS: We performed lncRNAs analysis of P. ternata in response to shading using RNA-seq data from our previous studies. A total of 13,927 lncRNAs were identified, and 145 differentially expressed lncRNAs (DELs) were obtained from the comparisons of 5 days shade (D5S) vs. 5 days of natural light (D5CK), 20 days of shade (D20S) vs. 20 days of natural light (D20CK), D20S vs. D5S, and D20CK vs. D5CK. Of these, 119 DELs (82.07%) were generated from the D20S vs. D20CK comparison. RESULTS: Gene ontology (GO) analysis indicated that the reactive oxygen (ROS) metabolism and programmed cell death (PCD) processes might regulate shade-induced growth promotion. The "signal transduction" and "environmental adaptation" in the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used for lncRNA-mRNA regulatory network construction and showed that the lncRNAs might mediate P. ternata growth by regulating ROS accumulation and light signals. CONCLUSIONS: This study explores lncRNAs' functions and regulatory mechanisms related to P. ternata growth and lays a foundation for further research on P. ternata.


Assuntos
Pinellia , RNA Longo não Codificante , Pinellia/genética , Pinellia/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Perfilação da Expressão Gênica
10.
Transplant Proc ; 55(9): 2232-2240, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37777366

RESUMO

The study aims to lessen the monetary burden on patients and society by decreasing the price of proprietary drugs used in leukemia therapy. Flow cytometry, reverse transcription polymerase chain reaction, western blot, and a patient-derived xenograft mouse model were used to confirm the therapeutic effect of Pinellia ternata extract on leukemia. Three types of leukemia cells (K562, HL-60, and C8166 cell lines) were found to undergo early apoptosis (P ≤ .05) after being exposed to P. ternata extract, as measured by flow cytometry. Reverse transcription polymerase chain reaction results showed that P. ternata extract at both middle (300 µg/mL) and high (500 µg/mL) concentrations was able to down-regulate Bcl-2 and upregulate mRNA expression of Bax and caspase-3. In the patient-derived xenograft mouse model formed by BALB/c-nu/nu nude mice, immunohistochemistry indicated that P. ternata extract effectively suppressed the proliferation of leukemia cells. Therefore, P. ternata extract at 300 µg/mL and 500 µg/mL could effectively inhibit myeloid and lymphocytic leukemia cell proliferation and promote leukemia cell apoptosis by regulating Bax/Bcl-2 and caspase-3.


Assuntos
Leucemia , Pinellia , Humanos , Camundongos , Animais , Caspase 3/genética , Caspase 3/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Pinellia/metabolismo , Camundongos Nus , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia , Apoptose , Leucemia/tratamento farmacológico , Proliferação de Células
11.
Genes (Basel) ; 14(9)2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37761867

RESUMO

Pinellia ternata (Thunb.) Breit (abbreviated as P. ternata) is a plant with an important medicinal value whose yield is restricted by many factors, such as low reproductive efficiency and continuous cropping obstacles. As an essential breeding material for P. ternata growth and production, the bulbils have significant advantages such as a high survival rate and short breeding cycles. However, the location effect, influencing factors, and molecular mechanism of bulbil occurrence and formation have not been fully explored. In this study, exogenously applied phytohormones were used to induce in vitro petiole of P. ternata to produce bulbil structure. Transcriptome sequencing of mRNA and miRNA were performed in the induced petiole (TCp) and the induced bulbil (TCb). Gene Ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed for the identification of key genes and pathways involved in bulbil development. A total of 58,019 differentially expressed genes (DEGs) were identified. The GO and KEGG analysis indicated that DEGs were mainly enriched in plant hormone signal transduction and the starch and sucrose metabolism pathway. The expression profiles of miR167a, miR171a, and miR156a during bulbil induction were verified by qRT-PCR, indicating that these three miRNAs and their target genes may be involved in the process of bulbil induction and play an important role. However, further molecular biological experiments are required to confirm the functions of the identified bulbil development-related miRNAs and targets.


Assuntos
MicroRNAs , Pinellia , Reguladores de Crescimento de Plantas/farmacologia , Pinellia/genética , Melhoramento Vegetal , MicroRNAs/genética , RNA Mensageiro
12.
Biotechnol Lett ; 45(10): 1381-1391, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37589824

RESUMO

OBJECTIVE: In this study, we established an efficient and rapid transient expression system in the protoplasts of Pinellia ternata (Thunb.) Breit. (P. ternata). RESULTS: The protoplasts of P. ternata were prepared from plant leaves as the source material by digesting them with the combination of 20 g·l-1 cellulase and 15 g·l-1 macerozyme for 6 h. Based on the screening of PEG concentration, the conditions for PEG-mediated protoplast transformation were improved, and the highest transformation efficiency was found for 40% PEG 4000. Furthermore, we used the subcellular protein localization technique in P. ternata protoplasts to allow further validation of transient expression system. CONCLUSIONS: We present the method that can be applicable for studying both gene verification and expression in P. ternata protoplasts, thus allowing for engineering the improved varieties of P. ternata through molecular plant breeding techniques. This method can also be widely applicable for analyzing protein interactions, detecting promoter activity, for somatic cell fusion in plant breeding, as well as for other related studies.


Assuntos
Celulase , Pinellia , Pinellia/genética , Protoplastos , Melhoramento Vegetal , Embaralhamento de DNA
13.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37511363

RESUMO

Using petiole material as explants and directly inducing the formation of microtubers without going through the callus stage is an essential way to rapidly expand scarce medical plants such as Pinellia ternata. However, the early molecular mechanism underlying the formation of the microtuber is largely elusive. Here, we conducted cytology and dynamic transcriptome analyses of inchoate microtubers in Pinellia explants and identified 1092 differentially expressed genes after their cultivation in vitro for 0, 5, and 15 days. Compared with 0 day, the number and size of the microtuber cells were larger at 5 and 15 days of culture. Detailed categorization revealed that the differentially expressed genes were mainly related to responses to stimulus, biological regulation, organelles, membranes, transcription factor activity, and protein binding. Further analysis revealed that the microtuber at different incubation days exhibited quite a difference in both hormone signaling pathway transduction and the regulation pattern of transcription factors. Therefore, this study contributes to a better understanding of the early molecular regulation during the formation of the microtuber and provides new insights for the study of the rapid expansion of P. ternata and other medical plants.


Assuntos
Pinellia , Pinellia/genética , Perfilação da Expressão Gênica , Hormônios/metabolismo , Expressão Gênica
14.
J Nat Med ; 77(4): 761-773, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37311896

RESUMO

Pinellia tuber, the dried tuber of Pinellia ternata, causes a very strong acridity sensation in the oral and laryngopharynx mucosa when taken orally in its unprocessed form. In traditional Chinese medicine (TCM), this sensation has been called "toxicity", and Pinellia tuber must be processed using ginger extract, licorice, or alum. In Japanese traditional Kampo medicine, since "toxicity" can be eliminated by decocting, it should not be processed. However, little is known about the mechanism underlying the "detoxification" of Pinellia tubers. In this study, we produced murine antiserum using recombinant P. ternata lectin (PTL), developed an immuno-fluorescence staining method for PTL in the needle-shaped crystals (raphides) that were prepared by petroleum ether extraction (PEX) from Pinellia tuber, and elucidated the mechanism of the processing of Pinellia tuber using heat or ginger extract. After heating the raphides in water, the amount of PTL contained in the raphides was significantly reduced by the immunostaining, although the shape of the raphides was not changed. Incubating raphides with dried ginger extract also significantly reduced the amount of PTL in the raphides in a concentration-dependent manner. By the activity-guided fractionation of ginger extract, the active ingredients in the ginger extract were oxalic acid, tartaric acid, malic acid, and citric acid. Among these four organic acids, oxalic acid mainly contributed to the effect of dried ginger extract by its content in ginger extract and its activity. These results exhibit scientific evidences for the traditional theories of processing to "detoxify" Pinellia tuber in TCM and Kampo medicine.


Assuntos
Pinellia , Camundongos , Animais , Pinellia/química , Calefação , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Lectinas , Ácido Oxálico
15.
J Ethnopharmacol ; 315: 116720, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37268256

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Pinellia ternata (Thunb.) Breit. (PT) has been demonstrated to be effective against the allergic airway inflammation (AAI) in clinical practices, especially in cold asthma (CA). Until now, the active ingredients, protective effect, and possible mechanism of PT against CA remain unknown. AIM OF THE STUDY: The aim of this investigation was to examine the therapeutic impact and elucidate the underlying mechanism of PT on the AAI of CA. METHODS: The compositions of PT water extract were determined via the UPLC-Q-TOF-MS/MS. The ovalbumin (OVA) and cold-water baths were used to induce CA in female mice. Morphological characteristic observations, expectorant effect, bronchial hyperreactivity (BHR), excessive mucus secretion, and inflammatory factors were used to uncover the treatment effect of PT water extract. In addition, the mucin 5AC (MUC5AC) mRNA and protein levels and the aquaporin 5 (AQP5) mRNA and protein levels were detected via qRT-PCR, immunohistochemistry (IHC), and western blotting. Moreover, the protein expressions associated with the TLR4, NF-κB, and NLRP3 signaling pathway were monitored by western blot analysis. RESULTS: Thirty-eight compounds were identified from PT water extract. PT showed significant therapeutic effects on mice with cold asthma in terms of expectorant activity, histopathological changes, airway inflammation, mucus secretion, and hyperreactivity. PT exhibited good anti-inflammatory effects in vitro and in vivo. The expression levels of MUC5AC mRNA and protein decreased significantly, while AQP5 expression levels increased significantly in the lung tissues of mice after administration with PT as compared to mice induced by CA. Furthermore, the protein expressions of TLR4, p-iκB, p-p65, IL-1ß, IL-18, NLRP3, cleaved caspase-1, and ASC were markedly reduced following PT treatment. CONCLUSIONS: PT attenuated the AAI of CA by modulating Th1- and Th2-type cytokines. PT could inhibit the TLR4-medicated NF-kB signaling pathway and activate the NLRP3 inflammasome to reduce CA. This study provides an alternative therapeutic agent of the AAI of CA after administration with PT.


Assuntos
Asma , Pinellia , Feminino , Camundongos , Animais , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pinellia/química , Receptor 4 Toll-Like/metabolismo , Expectorantes/uso terapêutico , Espectrometria de Massas em Tandem , Asma/patologia , Transdução de Sinais , Pulmão , Inflamação/patologia , RNA Mensageiro/metabolismo , Ovalbumina/farmacologia
16.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175702

RESUMO

Pinellia ternata (Thunb.) Breit. (P. ternata) is a very important plant that is commonly used in traditional Chinese medicine. Its corms can be used as medicine and function to alleviate cough, headache, and phlegm. The epidermis of P. ternata corms is often light yellow to yellow in color; however, within the range of P. ternata found in JingZhou City in Hubei Province, China, there is a form of P. ternata in which the epidermis of the corm is red. We found that the total flavonoid content of red P. ternata corms is significantly higher than that of yellow P. ternata corms. The objective of this study was to understand the molecular mechanisms behind the difference in epidermal color between the two forms of P. ternata. The results showed that a high content of anthocyanidin was responsible for the red epidermal color in P. ternata, and 15 metabolites, including cyanidin-3-O-rutinoside-5-O-glucoside, cyanidin-3-O-glucoside, and cyanidin-3-O-rutinoside, were screened as potential color markers in P. ternata through metabolomic analysis. Based on an analysis of the transcriptome, seven genes, including PtCHS1, PtCHS2, PtCHI1, PtDFR5, PtANS, PtUPD-GT2, and PtUPD-GT3, were found to have important effects on the biosynthesis of anthocyanins in the P. ternata corm epidermis. Furthermore, two transcription factors (TFs), bHLH1 and bHLH2, may have regulatory functions in the biosynthesis of anthocyanins in red P. ternata corms. Using an integrative analysis of the metabolomic and transcriptomic data, we identified five genes, PtCHI, PtDFR2, PtUPD-GT1, PtUPD-GT2, and PtUPD-GT3, that may play important roles in the presence of the red epidermis color in P. ternata corms.


Assuntos
Pinellia , Transcriptoma , Antocianinas/genética , Antocianinas/metabolismo , Pinellia/genética , Perfilação da Expressão Gênica , Glucosídeos/metabolismo
17.
Complement Ther Clin Pract ; 52: 101769, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37224584

RESUMO

BACKGROUND: and purpose: Banxia-Houpo-Tang (Banha-Hubak-Tang, BHT) is an East Asian traditional herbal medicine used for treating depression. Hence, this review aimed to provide reliable evidence on the efficacy and safety of BHT for depression. METHODS: Overall, 15 electronic databases were searched until July 31, 2022, and randomized controlled trials (RCTs) of BHT for depression were reviewed. The cochrane risk of bias tool version 2.0 was used for quality assessment. A meta-analysis was conducted to evaluate the efficacy and safety of BHT for depression. RESULTS: Fifteen RCTs (1,714 participants) were included. The pooled results suggested that the efficacy of BHT alone (standardized mean difference [SMD], -0.39; 95% confidence interval [CI], -0.79 to 0.00; P = 0.05) was similar to that of antidepressants alone in terms of the Hamilton depression scale (HAMD) scores. Their combination led to a more significant improvement in HAMD scores (SMD, -0.91; 95% CI, -1.21 to 0.60; P < 0.00001). Moreover, compared with antidepressants alone, BHT alone had a lower risk of causing adverse events, but the combination therapy exhibited a similar risk. No severe adverse events were reported. The overall risk of bias was high. The quality of evidence was very low to moderate. CONCLUSION: The study results indicate that BHT may be beneficial for treating depression. However, due to the clinical heterogeneity and low methodological quality of the included studies, the obtained findings should be interpreted with caution. Hence, further studies on this topic are warranted.


Assuntos
Pinellia , Humanos , Depressão/terapia , Antidepressivos/efeitos adversos , Terapia Combinada
18.
Phytomedicine ; 115: 154823, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37099981

RESUMO

BACKGROUND: Pinellia ternata (P. ternata, Banxia)-containing traditional Chinese medicine (TCM) is widely used in China as an adjuvant treatment for chemotherapy-induced nausea and vomiting (CINV). However, evidence of its efficacy and safety remains limited. PURPOSE: To investigate the efficacy and safety of P. ternata-containing TCM combined with 5-hydroxytryptamine-3 receptor antagonists (5-HT3RAs) in the treatment of CINV. STUDY DESIGN: Systematic review and meta-analysis of randomized controlled trials (RCTs). METHODS: All relevant RCTs were systematically retrieved from seven internet databases (up to February 10, 2023). P. ternata-containing TCM combined with 5-HT3RAs to treat CINV was included in all RCTs. The clinical effective rate (CER) was defined as the primary outcome, while appetite, quality of life (QOL), and side effects were secondary outcomes. RESULTS: The meta-analysis included 22 RCTs with 1,787 patients. Our results indicated that P. ternata-containing TCM combined with 5-HT3RAs significantly improved the CER of CINV (RR = 1.46, 95% CI = 1.37-1.57, p < 0.00001), appetite (RR = 1.77, 95% CI = 1.42-2.20, p < 0.00001), QOL (RR = 7.67, 95% CI = 1.56-13.78, p = 0.01), the CER of several 5-HT3RA medications (RR = 1.47, 95% CI = 1.37-1.57, p < 0.00001), and acute and delayed vomiting (RR = 1.23, 95% CI = 1.12-1.36, p < 0.0001) compared with the 5-HT3RAs alone, while the combination therapy decreased the incidence of side effects induced by 5-HT3RAs for CINV (RR = 0.50, 95% CI = 0.42-0.59, p < 0.00001). CONCLUSION: According to the findings of this systematic review and meta-analysis, P. ternata-containing TCM combined with 5-HT3RAs was safer and more effective than 5-HT3RAs alone for CINV patients. However, due to the limitations of the included studies, more high-quality clinical trials are required to further validate our findings.


Assuntos
Antineoplásicos , Pinellia , Humanos , Medicina Tradicional Chinesa/efeitos adversos , Vômito/induzido quimicamente , Vômito/tratamento farmacológico , Náusea/induzido quimicamente , Náusea/tratamento farmacológico , Antineoplásicos/uso terapêutico
19.
Chin J Nat Med ; 21(4): 243-252, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37120243

RESUMO

Pinellia ternata is an important medicinal plant, and its growth and development are easily threatened by high temperature. In this study, comprehensive research on physiological, cytological and transcriptional responses to different levels of heat stress were conducted on a typical phenotype of P. ternata. First, P. ternata exhibited tolerance to the increased temperature, which was supported by normal growing leaves, as well as decreased and sustained photosynthetic parameters. Severe stress aggravated the damages, and P. ternata displayed an obvious leaf senescence phenotype, with significantly increased SOD and POD activities (46% and 213%). In addition, mesophyll cells were seriously damaged, chloroplast thylakoid was fuzzy, grana lamellae and stroma lamellae were obviously broken, and grana thylakoids were stacked, resulting in a dramatically declined photosynthetic rate (74.6%). Moreover, a total of 16 808 genes were significantly differential expressed during this process, most of which were involved in photosynthesis, transmembrane transporter activity and plastid metabolism. The number of differentially expressed transcription factors in MYB and bHLH families was the largest, indicating that these genes might participate in heat stress response in P. ternata. These findings provide insight into the response to high temperature and facilitate the standardized cultivation of P. ternata.


Assuntos
Pinellia , Plantas Medicinais , Pinellia/genética , Resposta ao Choque Térmico/genética , Fotossíntese/genética , Plantas Medicinais/genética , Fenótipo
20.
Gene ; 870: 147426, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37044184

RESUMO

The dried tuber of Pinellia ternata (Thunb.) Breit, Pinelliae Rhizoma (PR, also named 'Banxia' in Chinese), is widely used in traditional medicine. This review aims to provide detail summary of active ingredients, pharmacological effects, toxic ingredients, detoxification strategies, and omic researches, etc. Pharmacological ingredients from PR are mainly classified into six categories: alkaloids, amino acids, polysaccharides, phenylpropanoids, essential oils, and glucocerebrosides. Diversity of chemical composition determines the broad-spectrum efficacy and gives a foundation for the comprehensive utilization of P. ternata germplasm resources. The pharmacological compounds are involved in inhibition of cancer cells by targeting various pathways, including activation of immune system, inhibition of proliferation and cycle, induction of apoptosis, and inhibition of angiogenesis. The pharmacological components of PR act on nervous system by targeting neurotransmitters, activating immune system, decreasing apoptosis, and increasing redox system. Lectins, one major class of the toxic ingredients extracted from raw PR, possess significant toxic effects on human cells. Inflammatory factors, cytochrome P450 proteins (CYP) family enzymes, mammalian target of rapamycin (mTOR) signaling factors, transforming growth factor-ß (TGF-ß) signaling factors, and nervous system, are considered to be the target sites of lectins. Recently, omic analysis is widely applied in Pinellia genus studies. Plastome genome-based molecular markers are deeply used for identifying and resolving phylogeny of Pinellia genus plants. Various omic works revealed and functional identified a series of environmental stress responsive factors and active component biosynthesis-related genes. Our review summarizes the recent progress in active and toxic ingredient evaluation, pharmacological effects, detoxification strategies, and functional gene identification and accelerates efficient utilization of this traditional herb.


Assuntos
Alcaloides , Medicamentos de Ervas Chinesas , Pinellia , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Pinellia/química , Multiômica , Lectinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...